
ADA079 B51 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB DH SCHOO--ETC F/6 1/2
'IIMUM TIME TURNS WITH THRUST REVERSAL.(J)
ZEC 79 T L JOHNSON

UNCLASSIFIED AFIT/GAE/AA/79-6 NL'"Ei/lh///EllI

MENOEONEEh2-hhE

EhhhmhhhhE/l/l/ll//l/lu
flflfllflflfflflI



. OF

---------

~j am~

U4I4 I STU ARFb

AMUNVRST

A.4, RC INTIUT OF TECNOOG

;-lh-* t#*4~ A~ FL-e IS*O

no S

p1p1.4 (o uh



00

11314 TIME TURNS WITH THRUST

REVERA

AFIT/GAE/ ,/79D-6 Thomas L. ohn
ora- aptain SAF

.D DC

A

(



AFIT/GAE/AA/79D-6

MINIMUM TIME TURNS WITH THRUST REVERSAL

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

by i '.- on FM'

NTIS GIR&I

Thomas L. Johnson, B.S. DDZ TA3

Capt USAF Justi±fic . .

Graduate Aeronautical Engineering By

December 1979 -

Approved for public release; distribution unlimited. ,

_ _ _



Acknowledgements

* I would like to thank my thesis advisor, Captain Jim Rader,

and my thesis committee consisting of Captain Jim Silverthorn and

Professor John D'Azzo for their efforts in helping me complete this

thesis. Without their help, I would have not obtained the results I

did, nor would I have finished in time to graduate. I would also like

to thank my wife, Deanna, for her support at hL,,±e in helping me and

enduring with me the struggle of completing AFIT.

ii

*I



Table of Contents

-i Page

Acknowledgements................... . . .... .. .. .. . ......

List of Figures.............. .............. v

List of Tables............... ........... vi

List of Symbols. ......................... vii

Abstract....................... ...... ix

I. Introduction .. .........................

Background. ........................ 1
Problem Statement .. .................... 2
Scope .. .......................... 3
Assumptions. ............ .... ......... 3
Summary of Current Knowledge. ............... 5
Approach ........ .................. 5

II. Defining the Minimum Time to Turn Problem. .......... 7

The Aircraft and the Turn .. ................ 7
Modeling the Motion of the Aircraft ..............8
The Aerodynamic/Thrust Forces .. .............. 9
The Atmosphere. ......... ...............10
The Control Variable Constraints ..............11

III. The Optimal Control Problem Approach. .............12

The Optimal Control Problem. ....... ........ 12
Conditions to be Satisfied ................. 13
Solving the Optimal Control Problem. ....... .... 14

IV. The Suboptimal Control Problem Approach.............18

The Suboptimal Control Problem ..... ......... 18
Conditions to be Satisfied ................. 19
Method of Solution ..................... 20

V. Solving the Minimum Time to Turn Suboptimal
Control Problem .......... .............. 24

Equations of Motion .. .................... 24
The Control Variable Constraints ............. 26
Mathematical Form for Describing the
Control Variables............. .......... 29



( Table of Contents

2 Page

Numerical Methods.....................30
Convergence Criteria....................34
Approach to Guessing the Controls.............35

VI. Results................. .. ......... 37

VII. Conclusions and Recommendations .. ............. 61

Bibliography. ...... .................... 63

VITA ..... ............. ........ ...... 64

iv



List of Figures

Figure Page

1. Angle of Attack vs Velocity Constraint . . 27

2. Bank Angle Controls for Case 1 .. ........ . 39

3. Aircraft Trajectories for Case 1 ... ........ 40

4. Bank Angle Controls for Case 2 .. ......... 42

5. Aircraft Trajectories for Case 2 .. ........ 43

6. Bank Angle Controls for Case 3 .. ......... 45

7. Aircraft Trajectories for Case 3 ........ 46

8. Bank Angle and Thrust Controls for Case 4 . .... ... 50

9. Aircraft Trajectories for Case 4 .. ........ 51

10. Bank Angle and Thrust Controls for Case 5 ..... 53

11. Aircraft Trajectories for Case 5 .. ........ 54

12. Bank Angle and Thrust Control for Case 6 ..... 56

13. Aircraft Trajectories for Case 6 .. ........ 57

vI



List of Tables

Table Page

1. Results from Previous Work .... ........ . 5

2. Initial and Final Conditions of the Turns 8.....8

3. Optimal Coefficients for Case 1 .... ........ 38

4. Optimal Coefficients for Case 2 ... . . ..... 41

5. Optimal Coefficients for Case 3 . ..... .. . •. . 44

6. Optimal Coefficients for Case 4 ...... ... .... 49

7. Optimal Coefficients for Case 5 ............ 52

8. Optimal Coefficients for Case 6 .. .. . . ...... 55

9. Summary of Results ..... .. ........... 60

vi



LIST OF SYMBOLS

x - distance (,x-direction)

y - distance (y-direction)

h - altitude-

V - velocity

- flight path angle

'P - heading angle

5 - wing area

W - weight

T - thrust

L - lift

D - drag

N - side force

C - thrust angle of attack

-thrust side slip angle

* - bank angle

a - angle of attack

Vr - thrust control variable

g - gravitational acceleration

90 - gravitational acceleration at sea level

P - density

P0 - density at sea level

a. - density ratio

T - nondimensional time

vii



C - lift coefficient

- drag coeffici-t

CL% - lift curve slope

CD - parasite drag coefficient
0

K - induced drag parameter

G - performance index (tf)

F - augmented performance index

X - state vector

U - control vector

-M - final condition vector

H - Variational Hamiltonian

- Lagrange multiplier vector (differential equations)

V - Lagrange multiplier vector (final conditions)

A - unknown parameter vector

( )I - initial value

( )f - final value

) c - corner value

-( (A arbitrary)( A DA

da
- -a (a arbitrary)

T

a - a transposed (a arbitrary)

(A
viii



* AFIT/GAE/AA/79D-6

Abstract

The object of this study is to find the optimal trajectories and

corresponding minimum turning times for a high performance aircraft

with and without thrust reversal to perform a prescribed turn, and

then to compare those trajectories and times to evaluate the benefit of

thrust reversal. Optimal. control theory is applied to solve the mini-

mum time to turn optimal control problem, using a subop mal control

problem approach and a second-order parameter-optimizati-a method.

The results of the study found that the suboptimal control approach

was effective in solving the problem, that thrust reversal is beneficial

in reducing turning times if the aircraft's initial velocity is above

the corner velocity, and that thrust reversal is not beneficial in per-

forming a minimum time turn without losing energy.
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MINIMUM TIME TURNS WITH THRUST REVERSAL

I Introduction

Background

The F-15 Eagle is an example of a high speed, high thrust, high

performance aircraft. One of its notable characteristics of performance

is having a thrust to weight ratio greater than unity. A great deal of

research is presently being directed in the area of aircraft thrust. Not

only in the sense of finding ways to increase thrust, but also to find

ways to better use and manage thrust. For example, direct thrust is used

in V/STOL aircraft such as the Harrier to decrease or eliminate take-off

and landing distances. Jet engine exhaust is directed over the upper

surface of the wing of Boeing's YC-14 to create more lift and thus enabling

larger gross payload weights. Thrust vectoring through the use of special

jet engine exhaust nozzles is being studied to determine if it can pro-

vide the directional stability and control to replace the verticle stabi-

lizer of an F-Ill aircraft. In-flight thrust reversal is another area of

research, and is the one with which this thesis is concerned.

Thrust reversal has been used to a limited extent on both com-

mercial and military aircraft for the purpose of decreasing landing roll.

The question is, can thrust reversal improve the in-flight performance of

a fighter aircraft like the F-15? Can it do so by increasing the air-

craft's capability to decelerate? Thrust reversal may prove valuable

during a high G turn to escape a pursuer or to close in on an advisary.
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IAn Aircraft's turning performance is characterized by the time it takes

to complete a turn. For a set of prescribed initial and final conditions

describing a turn, there is an optimal trajectory and, thus, an optimal

velocity profile that can be flown to complete the prescribed turn in

minimum time. Thrust reversal could be beneficial in helping an air-

craft follow that optimal velocity profile depending upon the initial

conditions from which the turn is initiated. However, it could also

decrease the aircraft's specific energy which would be unfavorable since

the advantage in an air-to-air combat situation is maintained by the

aircraft with the greatest specific energy.

Optimal control theory has been used extensively to find the

optimal aircraft controls and thus, the optimal trajectories for a high

performance aircraft without thrust reversal to perform a minimum time

turn. However, no consideration has been given to the use of thrust

reversal to improve the minimum time to turn. For this reason, thrust

reversal is studied to determine its feasibility for use in improving

an aircraft's turning performance.

Problem Statement

The problem is finding the optimal controls which will maneuver

a high performance fighter aircraft through a particular turn prescribed

by a set of initial and final conditions, and doing so in the minimum

amount of time. The problem also includes finding those optimal controls

and minimum turning times for an aircraft with and without thrust reversal.

The turning maneuvers must also be within the aircraft's capability. For

example, the aircraft's maximum angle of attack before buffeting and

. ... .... .'.(. .



stalling occur cannot be exceeded. The maximum and minimum available

thrust values cannot be exceeded. And last, the aircraft's structural

load limit cannot be exceeded.

The object of this study is to find the optimal trajectories

and corresponding minimum turning times for a high performance aircraft

with and without thrust reversal to manuever a prescribed turn, and,

then to compare those trajectories and turning tifnes to evaluate the

benefit of thrust reversal.

Scope

The scope of this study is limited to finding the optimal trajec-

tories and minimum turning times for turns initiated from two different

initial conditions, but always terminated by a single final condition.

The scope also includes finding those trajectories and turning

times for an aircraft with and without thrust reversal while all other

aircraft characteristics remain the same.

Assumptions

The following assumptions are made in order to model the equations

of motion, the aerodynamic and thrust forces, and the atmosphere: For

the equations of motion, it is assumed that the aircraft's turns are

performed over a flat earth with a constant gravitational acceleration,

that the aircraft flies coordinated turns, that negligible fuel is con-

sumed during the maneuvers, that the error due to the thrust vector not

being colinear with the velocity vector is negligible, and that the error

due to making small angle assumptions (i.e., cosa=l , sina=a , for

small a ) is also negligible. These assumptions are typical when

, 3



. , describing the equations of motions for a point mass aircraft which is

the model commonly used in studying minimum time turns for an aircraft.

For the aerodynamic and thrust forces, it is assumed that the lift coef-

ficient is a linear function of the angle of attack up to the maximum

angle of attack before buffeting and stalling occur. The drag coefficient

is a function of the square of'the lift coefficient. These assumptions

are based upon thin airfoil theory and are appropriate for use in this

study. It is assumed that the maximum available thrust is constant

throughout the turning maneuvers. This assumption is valid due to the

small change in density ratio due to change in altitude during the turns.

For the atmosphere it is assumed that the aircraft maneuvers are per-

formed in the Standard Atmosphere is defined by NASA in Ref (1). This

is common practice in the study of aircraft performance problems. It is

also assume. that the aircraft initiates the turns from straight and

horizontal flight, and that its angle of attack, bank angle, and thrust

can change instantaneously. Instantaneous controls are valid since an

exact model of control response is not necessary to study the benefit of

thrust reversal.

All of these assumptions are made to both match the assumptions

made in Ref (2) and to help simplify the complexity of the problem. The

errors created due to these simplifications will be negligible and the

stated purpose of this study can effectively be accomplished. The need

to match assumptions with those in Ref (2) will be discussed in the

approach to the problem.



Summary of Current Knowledge

Hennig, Bolding, and Helgeson, in Ref (2), obtained numerous

results for minimum time turns for an aircraft without thrust reversal.

Some results were obtained for turns initiated from two different initial

conditions, but with the same final conditions, and for various maximum

thrust to weight ratios. The results of two data sets (Ref [2:99]) are

of importance for the sake of comparison. They are summarized as follows:

DATA SET T/W Vi (ft/sec) hi (ft) Vf (ft/sec) hf (ft) tf (sec)

6 1.5 621 13,990 794 12,300 10.5

12 1.5 903 13,990 886 17,635 11.2

Table 1. Results from Previous Work (Ref [2])

These results are based upon the initial turning conditions of flight

path angle, 0 , and heading angle, 1 , both equal to zero, and the

final turning conditions of 0f=0 and 'f=180 .

The same aircraft and the same initial and final conditions as

specified in data sets 6 and 12 are used In this study for reasons

discussed in the approach to the problem.

Approach

A particular aircraft and turning situation must be selected in

order to study the benefit of thrust reversal upon turning performance.

Also, a particular optimization technique must be employed to find the

minimum time for the selected aircraft to perform the specified turn.

The particular aircraft and turning situations are selected from

Ref (2). This is done for the sake of comparing results in Ref (2) to

5
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the results obtained in this study for an aircraft without thrust

reversal. This also justifies the assumptions used as they are identical

to those used in Ref (2). A comparison is necessary to lend credibility

to the results of this study since a different optimization technique is

used in this study.

The approach used to solve for the optimal controls and minimum

turning times is developed by Hull and Edgeman in Ref (3). They develop

a suboptimal control approach to optimal control problems using a second-

order parameter optimization method. The problem of finding the optimal

controls and minimum turning times is a very complex problem. The solu-

tion complications arise because the physics of the problem, such as

describing the equations of motion for an aircraft, are so complex that

an analytical solution is impossible. The optimal control problem

approach is very complex and exhibits certain inherent solution difficul-

ties. Ref (2) uses this. approach with a gradient-restoration optimiza-

tion technique. The inherent solution difficulties will be pointed out

in section III. The suboptimal control problem approach reduces the

complexity and eliminates the inherent solution difficulties associated

with the optimal control problem as will be pointed out in section IV.

It is for this reason that the suboptimal control approach is used.

The following sections will define the minimum time to turn

problem, will analyze the optimal and suboptimal control problem

approaches, will discuss solving the suboptimal control problem, and will

present the results and conclusion obtained from the study.

LA.



II Defining the Minimum Time to Turn Problem

The first step in analyzing thrust reversal is to define the

minimum time to turn problem. This involves defining the particular air-

craft and the turn it is to perform, and then modeling the motion of the

aircraft, the aerodynamic and thrust forces, and the atmosphere in which

it flies. Also, the constraints upon the aircraft-must be defined. Each

of these items are now considered individually.

The Aircraft and the Turn

As mentioned previously, the aircraft and the type of turn per-

formed are selected from Ref (2) for the purpose of comparing results.

A hypothetical aircraft is used in Ref (2) and it is characterized by

the following parameters (Ref [2:97]):

CL = 5.0 S 237 sq ft

a

CD = .02 amax .2 radians
0

K - .05 (T/W)ma x  1.5

W - 12,150 lb. (L/W)max 7.22

Some of these parameters will be used when modeling the aerodynamic and

thrust forces. The type of turn performed assumes the aircraft to be

flying straight and horizontal immediately before entering the turn.

Thus, the initial heading and flight path angles equal zero. The turn

is completed when f .0 and OfflSO °  . Thus, the initial and final

conditions of the problem are as follows:

7
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CASE V1 (ft/sec) hi (ft) ei 1 * fo 1f*

1 621 13,990 0 0 0 180

2 903 113,990 0 0 0 180

Table 2. Initial and Final Conditions of the Turns

Since in both cases the initial altitude is 13,990 ft, the gravitational

acceleration at that altitude, g=32.131 ft/sec 2 (Ref [1:160]) is used as

the constant gravitational acceleration throughout a turn.

Modeling the Motion of the Aircraft

The equations of motion for flight of a point mass aircraft over

a flat earth are derived in Ref (4:48-49) and are:

x Vcosecos (1)

= Vcos0sin (2)

= VsinO (3)

gT D sn8()

V g(vcosccos -; - sine) (4)

Qgsin + gLcos - gcos - --(sin~coscsin.- cos~sine) (5)
WV WV V WV

(_ os : _) (6)

Assuming that a coordinated turn is performed, that the error due to the

thrust vector not being colinear with the velocity vector is negligible,

and that the error due to making small angle assumptions is negligible,

then Q-0 , sinC=0 and cna , and sinr=i and cosa=l , respectively.

8



The equations of motion then become:

= Vcos0cos) (7)

= Vcos0sin* (8)

Wi= Vne (9)

V Tg(- sine) (10)

T LV w + )COs - case] (11)

gs4id T L= V ta + (12)

These equations are used to model the motion of the'aircraft with respect

to an earth fixed coordinate frame. The state variables in these equa-

tions are x , y , h , V , e , and 4 . The control variables

are a , and T . A new control variable for T will be defined

in the following discussion.

The Aerodynamic/Thrust Forces

Lift and drag are the two aerodynamic forces in Eqs (10) through

(12) and can be expressed as:

POV 2SCL
2 (12)

PoOV2S%
2 (13).

The assumptions made based upon thin airfoil theory lead to the following

expressions for the lift and drag coefficients:

9



CL CL (14)

C C + KCL
2

SD L (15)

L D
For use in the equations of motions, the expressions for - andW W

are:

L _ Cov
S

S2W C L a(16)

D Po v 2 S

W 2W (CD + KCL) (17)

The thrust to weight ratio is also needed for use in the equa-

tions of motion. Since it is assumed the maximum thrust is constant

during turns, thrust will be defined by:

T=T i

max (18)

where w is the thrust control variable. Assuming constant aircraft

weight during turns, the thrust to weight ratio becomes:

T Tmax T
--W-- T max7T (19)

The Atmosphere

Assuming a standard atmosphere, the density ratio (Ref [5]) is

expressed as:
1

C -- [1- (n-l 0 hn-
PO  n R (20)

10
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I
where

P f .002378 slugs/ft3

go 32.174 ft/sec
2

T - 518.6880 R

n = 1.235

R = 1715 ft2 /sec2 -OR

The Control Variable Constraints

There are three physical constraints upon the aircraft. The air-

craft has a maximum angle of attack, a maximum structural load limit or

load factor, and a maximum and minimum thrust. These constraints are

expressed as:

a CL
max (21)

L L
- W)max (22)

and

Tin T Tax (23)

or, since a new control variable for thrust is defined

Tmin n T max (24)

The load factor constraint will be discussed more fully in section V.

II



III The Optimal Control Problem Approach

The optimal control problem approach is discussed to show the

complexity and the inherent solution difficulties of the approach. It

is also valuable to do so as some important information is learned con-

cerning the nature of the solution. First, the minimum time to turn

optimal control problem is defined. Second, the conditions to be satis-

fied by a solution are discussed. And third, the method of solving for

a solution is discussed.

The Optimal Control Problem

The optimal control problem is a functional minimization problem.

It is desired to find the functional relationships for the control vari-

ables that will minimize the time to turn, or the performance index

Gtf (25)

subject to the differential constraints (equations of motion) expressed

vectorally as

X f (26)

where. X is the state vector containing the state variables and f is

the vector containing the right side of Eqs (7) through (12). The problem

is also subject to thL control variable constraints, Eqs (21) through (24),

and the initial and final conditions, Table 1. The final conditions are

expressed vectorally as M . That is

12



_--( of (27)

M2  f 1800 (28)

If the final conditions are satisfied, then

M = 0 (29)

The Calculus of Variations is applied to find the necessary and

sufficient conditions to be satisfied by the optimal control variables.

Conditions to be Satisfied
(Ref (6:149-154])

If the augmented performance index, 3 , is defined by

tf

J G + vTM + XTf-.)dt (30)
ti

where v and X are Lagrange multiplier vectors, then the Variational

Hamiltonian, H , is expressed vectorally as

H - ATf (31)

The optimal controls expressed vectorally as U must satisfy the first

variational requirement or the Euler-Lagrange equations expressed vec-

torally as

S-Hj X(32)

= T

X H (33)

13



min
UOPT  U 1 (34)

Eq (34) basically states that the optimal controls are those that mini-

mize H . The first variation requirement also provides what are termed

natural or transversality conditions and corner conditions expressed

vectorally as:

Hi =Gt = 0
i ti (35)

H + =0
f tf (36)

X.T + G 0
1i (37)

fT  Gxf

- =0 f(38)

A(H) -Gt =0
c (39)

A(XT ) + G = 0
c (40)

0 =0
GV

As can be seen, the complexity of the problem is substantial and

becomes even more complex when attempting to solve to the problem.

Solving the Optimal Control Problem (Ref [7])

The optimal control problem, when the controls are neither on the

boundaries nor singular, can be easily transformed into a boundary value

problem. In this case the solution for Eq (34) is Identical to solving

HuO for the control variables as functions of X and ?

14



These expressions for the control variables are substituted into the

X and X equations. By guessing the unknown initial values, the

and X equations can then be numerically integrated from the initial

time to the guessed final time and the resulting final conditions com-

pared with the desired results. Various optimizing techniques can be

employed to iteratively change the guesses for the unknown values and

4ttempt to satisfy Eqs (32) through (42).

Inherent solution difficulties are involved in guessing the

final time and the unknown initial values for the X 's. Guessing the

final time is easier since it is a physical variable in the problem.

But this is not so for the X 's since they are not physical variables

and one has no intuitive feeling for their values. And, if there are

any corner conditions, they must satisfy Eqs (40) through (41). Also,

guesses for unknown corner values must be made. Many of the optimization

techniques that can be used require good initial guesses for the unknown

values before the technique will converge. Other optimizations techniques

do not require good initial guesses; however, they are slow to converge.

Thus, guessing the unknowns makes finding a solution very difficult.

Another solution difficulty, present in the problem occurs because

one of the control variables is a singular control. This can be demon-

strated by looking at the second partial derivatives of the Variational

Hamiltonian. The Variational Hamiltonian expanded from vector notation

becomes

H = Xifl + X2f2 + X3f3 + X4f4 + X5f5 + X6f6  (42)

15



where the f 's are the right sides of Eqs (7) through (12). The per-

fect derivative of the Hamiltonian with respect to T is

H +4 X +5 cos4+X gasin
T 4W 5VW 6VWcose (43)

The second partial derivative is

HTT 0  
(44)

Eq (44) identifies the thrust control as a singular control. The H 0

and H equations are not identically equal to zero. Eq (43) is not

a function of T ; therefore, H is linear with respect to T and

HT  is the value of the slope. Thus, in order to minimize H with

respect to T , thrust must satisfy one of three solutions depending upon

the value for H These solutions are:
T

1. T = Tmin when HT > 0

2. T = Tax when HT < 0

*3. T . Tmax when HT = 0 (45)

The problem can still be transformed into a boundary value problem but not

as easily. In order, to find an expression for T when HT=O , one must

use the relationhip

dn(H T )-T- 0 (n = 1,2,3...)
drn (46)

starting with n=1,2,... until an expression containing T can be

obtained. Then when HT=0 , that expression can be substituted into

the X and X equations, etc.

16



* Thus, it is known that the thrust is a singular control and that

it adds to the difficulty of finding a solution. It is therefore

desirable to use a different, approach which simplifies the complexity of

the problem and which can handle singular controls more easily. The

suboptimal control approach accomplishes that task.

17



IV The Suboptimal Control Problem Approach

(Ref [7] and (3])

The suboptimal control problem approach is discussed Lo show

how it simplifies the optimal control problem and eliminates the

inherent solution difficulties involved with the optimal control problem

approach. First, the minimum time to turn suboptimal control problem

is defined. Second, the conditions to be satisfied by a solution are

discussed. And third, the method of solving the suboptimal control

problem is discussed.

The Suboptimal Control Problem

The suboptimal control problem is a parameter optimization

problem, but otherwise it is basically the same as the optimal control

problem. The main difference is that in the suboptimal control

problem the control variables are described by some mathematical form

with unknown coefficients defined by vector B * The mathematical

form expressed functionally as

U U(t,B) (47)

can be an ordinary polynomial, a Fourier series, a Chebyshev series,

etc. If A denotes the following vector of unknown parameters:

A =Itf9B T(48)

then the Eqs (7) through (12) can be integrated from t=O to t=tf

subject to all control variable constraints, and the resulting final

18



conditions expressed functionally will be

Xf Xf(A) (49)

Or in other words, the final states are a function of the parameter

vector A . And thus so are the performance index and the final con-

dition vector M

Hence, the minimum time to turn problem expressed functionally

entails finding the parameter vector A which minimizes the time to

turn, or the performance index

G - G(A) (50)

subject to the differential constraints (equations of motion)

= f(X,A,t) (51)

the control variable constraints, the initial conditions, and the final

condition vector

M(A) = 0 (52)

Ordinary Calculus is applied to find the necessary conditions

to be satisfied by the solution for the parameter vector A

Conditions to be Satisfied

If the augmented performance index, F , is defined functionally

as:

F(Av)- G(A) + VTM(A) (53)

19



an optimal parameter vector A must satisfy the first variational

requirements expressed functionally as

A (54)

M(A) = 0 (55)

where

FF
FA =_A (56)

and contains what is termed first-order information or information con-

cerning the change in F with respect to changes in the elements in A

Thus, FA represents a slope and indicates in which direction A should

change to drive FA towards zero. FAT is a column vector containing ele-

ments equal in number to the number of unknown parameters in the vector A.

M is the final condition matrix containing two elements. These are the

only requirements a solution must satisfy. Thus, the suboptimal control

problem is extremely less complex and does not have the inherent solution

difficulties associated with the optimal control problem. If an effec-

tive method of solving for an optimal parameter vector A is available,

then the suboptimal control approach is a very desirable means to study

thrust reversal.

Method of Solution

Hull and Edgeman in Ref (3) formulate a second-order parameter-

optimization technique and algorithm specifically for application to sub-

optimal control problems. In summary, the technique uses second-order

information to determine bow to change the parameters in the vector A

20
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and the Lagrange multiplier vector V such that the vectors FAT  and

M are driven to zero. The vector relationships used to change A and

V are:

M A= (MFAA-1MAT) - 1 ( APM AFAA-1 + QM) (57)

4dA= -FAA- (PFAT + MA Tdv) (58)

where

Mm
MA f (59)

F 82F
AA A2  (60)

and P and Q are scaling factors which control optimization and end

condition satisfaction, respectively. F contains the second-order
AA

information mentioned above. FAA represents a change in slope and

indicates the direction in which slope is increasing or decreasing. rhe

algorithm developed to iteratively change A and V goes as follows:

1. guess A and v

2. integrate the equations of motions to obtain Xf

3. compute M , MA , MAA , FA  , and FAA;

4. select values for P and Q and compute Sv and S ;

5. set A=A+6v and V=V+6v

6. check convergence criteria and if unsatisfied go to step 2.

This algorithm lends itself for use in developing a computer program to

speed computations and thus, quickly find an optimal parameter vector A

The procedure is straightforward; however, some discussion on guessing

V, selecting P and Q , and stopping the 'computation is required.
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By using a gradient or first-order approach, an initial value

for V can be computed, thus eliminating the need to guess V Hull

and Edgeman do so and obtain the following vector relationships:

= (MAMA ) [(Q/P)M MAGA T  (61)

6A = -PFAT (62)

where

GG
GA A (63)

SA contains the first-order information used to calculate 6A . In

practice Eqs (61) through (62) should be employed initially for a number

of iterations until they become inefficient. Then, with the current

values for V and A , switch to the second-order equations (Eqs [57]

through [58]).

The procedure for selecting P and Q is not obvious. P and

Q must be selected to insure that Sv and 6A do not become too large

so that V and A are not changed too much such that the algorithm will

not converge to FA=O and M=0 . When in the neighborhood of the

optimum A , P and Q can be chosen so that the norms IIFATII and

IIM11 always decrease. A search on P and Q can be conducted to

find the lowest values for 1IFAT and IMj1 . P and Q can be

chosen on the basis that 116vil and JIAII are to be no greater than

certain percentages of IlVI and JIAIJ , respectively. Finally,

the iterative procedure 'can be started with small values of P and Q ;

and, when it is apparent that the optimal solu.tion is being approached,
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their values can be increased. Regardless of the approach followed,

it is necessary that P=1 and Q=I when in the final stages of con-

vergence. If the second-order method is started with the results

obtained from the gradient method which satisfy the final conditions,

one should set Q=! to hold the final conditions while optimizing.

Convergence is achieved when 1 F and JIM 1 are less

than some small positive quantity, since it is desired to satisfy the

Trequirements FA =0 and M=O . An alternate approach is to monitor

I 16vIl and 116AII and when they are less than some small positive

quantity, terminate the algorithm.
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V Solving the Minimum Time to Turn Suboptimal

Control Problem

The minimum time to turn suboptimal control problem is suffi-

ciently complex to require numerical methods and the use of a computer

to seek solutions. In section II the minimum time to turn problem was

efined and all the aircraft parameters, turning situations, equations

of motion, aerodynamic/thrust forces, atmospheric parameters, and con-

trol constraints were specified. It is now necessary to adapt the

defined problem for application in the algorithm specified in section IV.

This will include deriving the final form of the equations of motion,

incorporating the control variable constraints into the problem, and

defining the mathematical form for the control variables so that the

equations of motion may be integrated to find Xf Next, the numerical

methods to be used to find Xf , M , MA , MAA , FA , and FAA

must be specified. And last, tonvergence criteria and an approach to

guessing A must be determined. These areas are discussed individually

as folldws.

Equations of Motion

Eqs (7) through (12) are to be integrated to find Xf . The

final time is one of the unknown parameters in the problem. It will be

convenient to define a nondimensional time as

T t (0 ! T 1 ) (64)
t
f

24



so that the equations of motion are integrated from T=O to T=1

regardless of the final time parameter. The equations of motion must

be transformed so that they will be functions of the nondimensional

time T . By the chain rule

=X dX dT dX 1
dt dT dt = t (65)

and thus

dX

dtf X (66)

und Eqs (7) through (12) can be transformed by simply multiplying the

right side by the final time. By doing this and substituting the known

aircraft and atmospheric parameters into Eqs (16), (17), (19), and (20),

and substituting the constant gravitational acceleration and Eqs (16),

(17), (19), and (20) into Eqs (10) through (12), the resulting equations

of motion as a function of T are:

dX _

d- tfVcosecos (67)

ty tVcos~sinV
dT= f(68)

dh_
Af tfVsinO 

(69)

dV

dV tf{48.1965r V2 [(.0000149dT f

+ .0009315 e2)(l - .0000069h)' 25 6 ] _ 32.131 sinSl (70)
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dO 32.131 sin)d.ttf 1.57radT f V

+ .000116V 2 a(1 - .0000069h )4' 25 6 )cos4- cosO] (71)

t 32.131 sin.( 1

dT tf( Vcos (

+ .000116V2a(I - .0000069h)4' 25 6 ) (72)

The Control Variable Constraints

Eq (24) defines the thrust control variable constraint. The

thrust control variable ir has a maximum value of one. Its minimum

value is zero for an aircraft with no thrust reversal. Thus, the thrust

control variable constraint for no thrust reversal becomes

0 T r f 1.0 (73).

For an aircraft with thrust reversal, the minimum Tr value is specified

to be -.6 . This value is selected based upon educated estimates of

the maximum reverse thrust capable and that which could be sustained by

a pilot during the turn. Thus, the thrust control variable constraint

for thrust reversal becomes

-.6 : 7r 1.0 (74)

Eqs (21) and (22) both define a constraint upon the angle of

attack. The load factor constraint becomes

P0av
2 SCLCS L

2W W max (75)
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when Eq (12) is substituted into Eq (22). Substituting the known

parameters into Eq (76) and (21) the load factor constraint can be

reduced to

V2 a 5 62660.6 (76)

and the angle of attack constraint becomes

a :.2 (77)

These two constraints can be seen pictorially in Fig. 1.

ot amax
= 62660.6

aa

Velocity Vc

Fig 1. Angle of Attack vs Velocity Constraint

The corner velocity V is the velocity at which the lift coefficientc

required for flight at maximum load factor is equal to the maximum lift

coefficient. Based upon this definition the corner velocity can be

expressed as

V (62660 .6
max (78)
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Substituting in for amax , the corner velocity relationship becomes

V = 559.735 a (79)c

j This relationship becomes important when studying the optimal trajec-

tories which result in minimum times.

The control variable constraints are incorporated into the

problem basically by setting the control variable equal to its maximum

value when it exceeds its maximum and equal to its minimum value when

it falls below its minimum value. For highr order controls, such as

linear, quadratic, etc., the control histories may intersect their

boundaries at various times which can be predetermined before integrating

the equations of motion. If this situation occurs integration takes

place from Tr=O to T=T1  , from T=T to T=T , etc., where T1

T , etc., are the times, ordered consecutively, when the controls

intersect their boundaries. Doing this insures accuracy when integrating

the equations of motion such that the value for the controls change

exactly at the correct time during integration.

For the load factor constraint it cannot be predetermined when

the aircraft's velocity will equal the corner velocity. When the air-

craft's velocity is below the corner velocity a can equal the value

expressed by the mathematical form describing the angle of attack so long

as Cmax is not exceeded. When the aircraft's velocity is above the

corner velocity amax must be described by

62660.6
ax V20 (80)
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This is accomplished by checking during integration to determine when

the corner velocity is reached and changing to the appropriate describing

equation for angle of attack when it is.

Mathematical Form for Describing the Control Variables

The mathematical form used to describe the control variables is

a series using Chebyshev polynomials defined on the interval (0,1)

The polynomials, Tj , as a function of T for j=l to J-6 are

T=1 (81)

T2 = 2 - 1
2 (82)

T 3 = 82 - 8T + 1 (83)

T = 32T' - 48T2 + 18T 1 (84)

T = 128T4 - 256T 3 + 160T2 - 32T + 1 (85)

T6  512T' - 1280T4 + 1120T' - 40O 2 + 50T 1 (86)686

The control variables are then described by

NPH
E BzT

k=1 (87)

NPI
7= E CT

m l m m (88)
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NA

n l (89)

where B , C * and D are the unknown coefficients with NPH

NPI , and NA the number of unknown coefficients for n , , and

a respectively.

It is appropriate here to talk about the conditions under which the

a and w coefficients will not be parameters in the problem. Take the

case when a and 7 are described with only one coefficient, or are

constant controls. If a and/or it are at their maximum values and

if the F A terms corresponding to the a and/or ff coefficients are

negative, then in order to change the coefficients so as to drive their

corresponding FA  terms to zero (recall F A=0 is desired), the a

and/or 7r coefficients must exceed their allowable maximum value. Vice

versa, if 7t is at its minimum value and FA  corresponding to the' T

coefficient is positive, then the ff coefficient must fall below its

allowable minimum value. In either case, the a and/or it coefficients

no longer become parameters because their values are fixed at their maxi-

mum or minimum limits and their corresponding FA  terms cannot be

driven to zero. In such a case the effect of the a and/or it coeffi-

cients must be eliminated in order to calculate 6v and 6A without

their influence. This is accomplished by dropping all references to

these parameters in the matrices used to calculate 6v and 6A

Numerical Methods

Eqs (57), (58), (61), and (62) contain the matrices M , MA

M , F , and FAA . These matrices are 'determined using numerical
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techniques. FA and FA can be evaluated from the expressions

(Ref [3:484]):

T
FA G A + vTMA (90)

FAA G AA + VIMAA1 + V2MAA2 (91)

where GA is known analytically and GAA=O since G=tf . Thus, the

only unknowns are M , MA, and MAA

To evaluate M , Eqs (67) through (72) must be integrated to

determine the final states. A fifth-order, Runge-Kutta, controllable

'Step size integration technique using Fehlberg coefficients (Ref [8]) is

used for the integration. The Fehlberg technique is used because it controls

the amount of truncation error in each integration step by controlling

the step size. Thus, it can take the largest step possible without

violating the allowable truncation error prescribed in the program. The

result is fewer steps taken to integrate and thus, smaller accumulated

truncation error. This makes the Fehlberg technique more efficient and

accurate than other Runge-Kutta techniques. This proves beneficial when

calculating numerical derivatives.

The MA and MA matrices are determined using a central dif-

ferences numerical derivative technique (Ref [9:21-22]). Using a nominal

A where A are the individual elements in A , the equations ofn n

motion are integrated to obtain a nominal M , then using a positively

perturbed A orn

A n+ =An +6 n (92)
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and a negatively perturbed A orn

A =A -6
n- n n (93)

where 6n  is some small positive value, M+ and M are obtained.

The central differences representation for MA is
n

+ + - + (62)
Mn 26 n (94)

where n(62) represents an error term of order of magnitude 62
n n

The MA matrix contains two rows. The first row is determined using

MI values in Eq (94) and the second row is deterTbined using M2 values

in Eq (94). The MAA matrices are determined in a similar manner;

however, two elements A and A must be preturbed both positivelyn mn

and negatively to obtain M++ , M__ , M ,and M-+ . The central

differences representation for MA A are
n m

H M+- 2M+M_ (62)MA A =  62 + (n

n m n (95)

if n-m , and

A MA - - M+- - M+ + M
n m 

(96)

if nom. The MAA matrix is actually two matrices. One is determined

by using M1 values in Eqs (95) and (96) and the other by using M2

values in Eqs (95) and (96).
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The error terms in Eqs (94) through (96) can be ignored if

and 6 are small enough. The best accuracy in using the central

difference representations is obtained by using the smallest 6 possi-

ble. Caution must be taken when selecting 6 so that the numerator of

Eqs (94) through (96) is not of the same order of mignitude as the round-

off or truncation error assocfated with M due to the integration

.routine. The t used for the central difference'technique is

6 n. f (DELTA)An (97)

and if the absolute value of 6 is larger than DELTA thenn

6 n = DELTA (98)

where DELTA is some small positive number. Thus, 6 is controlled
n

by the value used for DELTA . To select the best DELTA to use.

several calculations of MA and MAA were made by varying values for

DELTA . By observing the variation between values of A  and MMA AA

using different DELTA 's varied by a factor of ten from 10- 1 to

10 , it was observed that for

DELTA > 102 (99)

significant differences in MA 's and MA 's resulted due to the

error terms in Eqs (94) through (96) becoming too large. Thus, 6 was

too large. For

DELTA : 10-  (100)
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differences began to be significant meaning round-off error due to the

integration routine was the same order of magnitude as the numerator

terms in Eqs (94) through (96). For

10- 5 < DELTA < 10- 3  (101)

the least variation occurred and DELTA=10- 4 was selected as the best

value to use.

Convergence Criteria

Convergence is controlled by the scaling factors P and Q

When Eqs (61) through (62) were used to start the iterative process Q

was set equal to P and P was selected small and was gradually

increased as convergence progressed. When this process became ineffi-

cient and Eqs (57) through (58) were used Q was set equal to one and

P was selected small and was gradually increased as convergence pro-

gressed.

The convergence criteria used to stop the second-order process

once P became equal to one was

III 10-4  (102)

IIFAI < '0-4 (103)

where IIFAI was calculated only using the FA terms which were not

associated with a boundary control as described earlier.
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Approach to Guessing the Controls

Since lift is what an aircraft uses to turn itself it is expected

that the aircraft can turn fastest by generating the largest amount of

lift possible. In order to do so the aircraft's angle of attack should

be on the boundary as shown pictorially in Fig. 1. It is also expected

that initially the aircraft's thrust parameter will be at its maximum or

.minimum value depending from which initial conditions the turn is ini-

tiated. This is expected also because it is known that thrust is a

singular control.

Based upon these expectations, the approach to guessing the

controls was to initially guess each control to be a constant value.

The algorithm is free to change that constant to any constant value

within the constraints of the problem. Once a solution for constant

controls was obtained, then the bank angle control was changed to a

linear control by adding another coefficient to the Chebyshev series

describing the bank angle while the thrust and angle of attack controls

continued to be expressed as constant controls. This procedure was con-

tinued until adding another coefficient to the bank angle control pro-

duced little change in the time to turn. Once these results were

obtained and analyzed, then other higher order controls for thrust and

angle of attack were considered and used to improve turning times.

This approach was used and results were obtained initially for

three cases. Case I was for the prescribed aircraft without thrust

reversal initiating the turn from an initial velocity below the corner

velocity or Vi=621 ft/sec (Vc @ 13990 ft - 694 ft/sec). Case 2 was

for the prescribed aircraft without thrust reversal initiating the
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turn from an initial velocity above the corner velocity or Vi=903

ft/sec . Case 3 was for the prescribed aircraft with thrust reversal

initiating the turn from an initial velocity above the corner velocity.

All of these cases used various orders of bank angle controls and con-

stant thrust and angle of attack controls. Then results for three

additional cases, Case 4, 5, ind 6, were obtained using bigher-order

thrust controls in Case 1, 2, and 3, respectively: These results are

presented in the following section.
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VI Results

It is appropriate to discuss the results obtained for the

optimal angle of attack control. A constant form of expressing angle

of attack when the aircraft's velocity was below the corner velocity was

used in all cases. The constant coefficient was free to be any value

.less than or equal to 0.2 . In all cases, the optimal coefficient

value was the maximum allowable value, and the associated F A term

was negative indicating that the coefficient desired to be greater than

its maximum value. It was anticipated that if an optimal angle of

attack history existed that was other than the fixed maximum allowable

limit, a lower constant coefficient would be found which would curve

fit that optimal control history similar to the way the constant bank

angle control fit the higher-order bank angle controls found. This

situation never occurred and all the following results presented found

the optimal angle of attack control to be its maximum value.

The results for Case I are listed and shown in Table 3, Fig. 2,

and Fig. 3. Table 3 lists the optimal coefficients found for the

various forms of the controls used and the resulting Lagrange multipliers.

Fig. 2 shows the various optimal bank angle histories and lists the

associated optimal constant thrust control variable values for epch

type of bank angle history. Fig. 3 shows the aircraft's trajectories

plotted as altitude vs velocity for each of the various bank angle

controls and also shows those trajectories in relation to the corner

velocity curve labeled Vc . The results for Cases 2 and 3 are

similarily listed and shown in Table 4, Fig. 4, Fig. 5, and Table 5,
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Fig. 6, Fig. 7, respectively. In Figs. 2, 4, and 6, PI-r and TF-(
minimum final time . The times shown in Figs. 3, 5, and 7 are the

minimum final times except for t-0 which identifies the initial con-

ditions of the turn.

From Figs. 3, 5, and 7 it can be observed that the best turning

times are obtained for cubic or higher order bank angle controls. In

all cases, the trajectories for cubic or higher order bank angle controls

are almost identical and cannot be distinguished individually upon the

graphs. The turning times listed for those trajectories are the best

times obtained. And also, the optimal constant thrust control variable

values for those trajectories are equal to their maximum or minimum

allowable values. The associated FA terms for the thrust control

variable coefficients indicated that the thrust control variable

desired to exceed the allowable limits. Most important of all, it can

be observed that better turning times are obtained when the aircraft's

trajectories follow more closely to the Vc curve or when a larger

portion of the trajectories are in the vicinity of the Vc curve.

Based upon this observation, a higher order thrust control variable was

used to attempt to reduce the turning times by maintaining the trajec-

tories closer to the Vc curve since in all cases the trajectories
capproached the V c curve, crossed it, and then continued away from it.

For Cases 4, 5, and 6, two different forms of a thrust control

variable were used to improve turning times. First, a linear thrust

control variable was used. Secondly, a bang-bang type thrust control

variable was used since some of the linear results had a trend towards

infinite slopes. A bang-bang thrust control is where the thrust varies
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instantaneously from its maximum or minimum allowable value to its

minimum or maximum allowable value respectively. The time when the

thrust control changes becomes a parameter in the problem. The results

obtained using these two thrust control variable forms are combined with

the best results obtained in Cases 1, 2, and 3 to form the total results

in Cases 4, 5, and 6.

* The results of Cases 4, 5, and 6 are listed and shown in Tables

6,.7, 8, Figs. 8, 10, 12, and Figs. 9, 11, and 13 respectively.

Tables 6, 7, and 8 list the optimal coefficients for the various forms

of controls used and the resulting Lagrange multipliers. Figs. 8, 10,

and 12 show the optimal bank angle and thrust control variable

(PI=n) histories. Figs. 9, 11, and 13 show the aircraft's trajectories

for the various forms of the thrust control variable.

The results of Case 4 are best shown in Figs. 8 and 9. The

optimal bank angle controls did not change appreciably for the three

different forms for the thrust control variable. The three different

associated aircraft trajectories varied only slightly near the later

part of the trajectory. The minimum times to turn varied only slightly

and the linear thrust control variable resulted in the best turning

time. The final value for the linear thrust control variable is

i=.1394 . This fact along with the fact that the bang-bang thrust

control did not decrease the turning time indicates that thrust reversal

would have no benefit in this case.

The results of Case 5 are best shown in Figs. 10 and 11. In

this case, the optimal bank angle controls did change appreciably. The

linear thrust control variable in this case tended to converge towards
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Table 6

Optimal Coefficients for Case 4

A FULL ON ON-OFF ON-LINEAR____________IATHRUST THRUST THRUST

MINIMUM TIME tf 9575270E+01 .9580989E+01 .9553958E+01

B I .1478629E+01 .1480379E+01 ..1481717E+01

B 2 .1066866E+O01. .1021527E+01 .1022Z93E+01

B 3 .1010573E+00 .1078232E+00 .1163696E+00

BANK ANGLE B 4 .2052865E+00 -.2287610E+00 -.2408131E+00
COEFFICIENTS '

B5 .4622987E-01 -.5017431E-01 -. 3176035E-01

B 6 .4738655E-01 .4920173E-01 .3962840E-01

THUTC 1.0 .8746054E+00 .1745161E+01

CONTROL/1

COEFFICIENTS 2 -. 1605740E-4O1

ANGLE OF 0.DfVV ,c=626./V)i >
ATTACK 02ifV c a=6606c2 fVVc
COEFFICIENT

LAGRANGE Vi .2265828E+01 .2138913E+01 .2129796E+01

MULTIPLIERS
.2 1879404E+01 -.1925062E+01 -. 1892610E+01
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Table 7

Optimal Coefficients for Case 5

A FULL-OFF OFF-ON OFF-LINEAR-
A THRUST THRUST ON THRUST*

MINIMUM TIME tf .1083090E+02 .1060527E+02 .1061267E+02

B I .1393745E+01 .1409545E+01 .1403790.E+O1

B .3474240E+OO .9437051E+00 .7815139E+OO

B -.5815670E-01 .6862573E-01 .451765SE-O1

BANK ANGLE B -44317098E-01 -.158953E1{)O -. 1198256E+00
COEFFICIEN~TS

B 5 .5783650E-02 -.4818163E-01 -.4604624E-01

B 6

THUTC 1 0.0 .6368652E+00 -. 5331165E+O00

CONTROL
COEFFICIENTS C 2  .2799886E+01

ANGLECO 0.2 if V<V , ca=(62660.6/dV2) if V>V

COEFFICIENT

LAGANG V .2842218E+00- .1893590E+01 .1666959E+01
MULTIPLIERS v 2  .3177074E+01 -.2350928E+01 -.2582316E+01
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Fig. 10. Bank Angle and Thrust Controls for Case 5
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Table 8

Optimal Coefficients for Case 6

A FULL REVERSE REVERSE-ON REVERSE-LIN-
A THRUST THRUST ON THRUST

MINIMUM TIE t f .1052318E4+02 .1025080E+02 .1025377E+02

B .1450784E+01 .1445877E+01 .1444364E-01

B 2 .9247146E+0Q.-.4805901E+OQ -.4C-Q1O29E+0O

B 3 . 6048093E-01 -. 3812296E-01 -.2616676E-01

BANK ANGLE B 4 .1847274E+00 .9998157E-O01 .8998715E-01
COEFFICIENTS

B 5 .6473106E-02 .1030242E-01 .5692150E-02

B 6

THIRUST C 1 -.6 .7580790E+00 -.4445520E402

CONTROL
COEFFICIENTS C 2  . 1000517E+03

ANGLE OF 0.2 if V<V (%c=(62660.6,/ 2  i >
ATTACK c c
COEFFICIENT

LAGRANGE v .I3061049E+01 -. 1748365E+01 -. 1474128E4_01
MULTIPLIERS V .22144956E+f01 -. 1765735E+01 -.2902723E+01
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an infinite slope solution. The off-linear-on thrust curve in Fig. 11

is the solution obtained prior to the program having difficulty in con-

verging to an infinite slope solution. The bang-bang or off-on thrust

control provided the best turning time. Note also the differences in

the trajectories due to the different forms for the thrust control

variable, and also the significant improvement in turning times.

The results of Case 6 are best shown in Figs. 12 and 13. Once

again, results similar to Case 5 are obtained. There is an appreciable

change in bank angle controls, trajectories, and turning times. Also,

the linear thrust control variable tended to converge to an infinite

slope solution and the reverse-linear-on thrust curve in Fig. 13 is the

solution obtained prior to the program having difficulty in converging

to an infinite slope solution.

No other forms for the thrust control variable were attempted

since the results at this point gave a good indication of the minimum

turning times and optimal trajectories that could be expected for the

optimal solutions. In Case 4, the linear thrust control results in an

optimal trajecto:-y which follows the closest to the V curve. Inc

Cace 5, the bang-bang thrust control resulted in an optimal trajectory

which followed more closely to the V curve for a greater part of the

trajectory. The same took place in Case 6. These results can be

improved upon. However, the change in turning times and the trajectories

would not be significant as can be seen in Case 4. The benefit of

thrust reversal can now adequately be evaluated by examining the minimum

turning times and associated optimal trajectories.
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In order to compare Case 1 and 2 to the results obtained in

Ref (2) and to compare Case 4, 5, and 6to evaluate the benefit of

thrust reversal, Table 9 has been made. Table 9 contains information

concerning the initial altitude and velocity, the final altitude and

velocity, and the turning time of the best optimal trajectories in each

of the cases. Also included is the initial and final specific energy

of the aircraft for those trajectories. This is done because in an

air-to-air combat situation it is desirable to always maneuver such

that the aircraft's specific energy loss is minimized, since an advan-

tage is maintained over an opponent by having more specific energy.

Therefore, it is important to consider specific energy when evaluating

thrust reversal. Specific energy can be determined from the expression

V2

E = (h +-) ft (104)

where g=32.131 ft/sec 2  . The best results of all cases are summarized

in Table 9 as follows.
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Table 9

Sumary of Results

h. v h f V f E. E f E-CE tf

(ft) f±t) (ft) ft (ft) (ft) (ft) (sec)
__________sec _____ sec

DATA SET 6 13990 621 12300 794 19991 22110 2119 10.5

CASE 1 13990 621 17338 781 19991 26830 6839 9.575

DATA SET 12 13990 903 17634 886 26679 29850 3171 11.2

CASE 2 13990 903 15603- 674 26679 22672 -4007 10.831

CASE 3 13990 903 10429 593 26679 15901 -10778 10.523

CASE 4 13990 621 17297 728 19991 25544 5553 9.554

CASE 5 13990 903 17421 783 26679 26961 282 '10.605

CASE 6 13990 903 12004 729 26679 20274 -6405 10.2511
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VII Conclusions and Recommendations

The following conclusions are made based upon the results as

summarized in Table 9.

1. The suboptimal control approach is an effective, credible,

and easy means of finding optimal trajectories and minimum turning

times.

2. Thrust reversal is not beneficial to reduce the minimum

time to turn if the aircraft's initial velocity is below the corner

velocity.

3. Thrust reversal is beneficial to reduce the minimum time

to turn if the aircraft's initial velocity is above the corner velocity.

4. While thrust reversal is beneficial in reducing turning

times, the loss of energy associated with these trajectories is too

large a penalty to pay.

Using the suboptimal control approach, smaller minimum turning times

for Case I and 2 were obtained than were obtained in Data Set 6 and 12

of Ref (2), respectively. Thus, the suboptimal control approach proved

effective, credible, and more important, easier in finding optimal

solutions. In Case 4, the best turning time was obtained using an on-

linear thrust control which had a minimum value of 7=.1394 at the

final time (see Fig. 8). The corresponding optimal trajectory (see

Fig. 9) followed the V curve the closest. Thus, thrust reversalc

would not be beneficial to reduce the turning time since it would not

be used if the aircraft's initial velocity was below the corner velocity.

However, in comparing Case 5 for the aircraft without thrust reversal
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and Case 6 for the aircraft with thrust reversal (see Table 9), thrust

reversal does prove beneficial in reducing the minimum time to turn if

the aircraft's initial velocity is above the corner velocity. Note

that the difference in minimum turning times in these cases is .354

seconds. Thus, thrust reversal improves the minimum turning time by

about 3.3%. In comparing Case 5 and 6 for the chanr" in specific

(Ee-E i) , Case 5 does not lose energy, but gains energyenergy eeg
f i

slightly, and Case 6 loses a substantial amount of energy (see Table 9).

Thus, thrust reversal is not beneficial in turning in minimal time with-

out losing specific energy. Note that the difference in the change of

specific energy in these two cases is 6,687 feet. Thus, thrust reversal

increases the energy loss by 25.1%.

It is recommended that aircraft turns be studied from the

point of view of reducing the energy loss during a turn. Future work

could allow a certain fixed time, slightly greater than the minimum

turning time, in which to perform a turn and find the optimal trajec-

tories using various thrust limits that will minimize energy loss.

Since thrust reversal in this study improved the minimum turning time

by only 3.3% and increased the energy loss by 25.1%, it would be more

important to minimize energy loss than to improve turning times in an

air-to-air combat situation.
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